Neuroscience, evolution, and culture

Tag Archives: intelligence

Human Cognitive Uniqueness conference videos are online!

Watch them here!

Videos and slides for Understanding Human Cognitive Uniqueness

I am starting to post videos and slides from Understanding Human Cognitive Uniqueness on the conference page. They will be uploaded as they get ready.

The videos have been recorded and edited by Malene Schjoenning.

If baboons can read, can pigeons, too?

“Can pigeons read?” is the question asked at the beginning of this old video, aimed at illustrating techniques to teach animals complex discriminations by rewarding them for correct choices but not for incorrect ones.

These techniques, developed around 1930, have been used in a study teaching baboons to recognize English words from non-words. Soberly entitled “Orthographic processing in baboons,” the study has been often headlined “Baboons can read,” even by the very journal who published it. My colleague Johan Lind was delighted to hear the news: “If they can read, then I can write to them and ask about animal intelligence.” Unfortunately, the only thing the baboons would be able to tell Johan is which combinations of letters are more likely to appear in English words, which is what they learned by receiving food anytime they correctly identified four-letter sequences as an English word or a non-word.

The study actually demonstrates that you do not need to know language to tell words from non-words. All languages have a statistical signature, whereby some combinations of sounds (and, therefore, letters) are common, and others are rare. Baboons are smart enough, and see well enough, to learn this. I would not be surprised if pigeons could do it too, given that they can, for example, discriminate paintings by different artists, presumably learning something about the artists’ “visual grammar.” Pigeons can also associate different written words with different actions, as the video above shows. All this suggests that the evolutionary origin of our ability to read is even more ancient than “reading” baboons suggest, pigeons being separated from humans by some 150 million years of independent evolution. Analyzing the structure of visual stimuli is a natural task for many animals, and I do not think the key to understanding human uniqueness lies here.

Tool use by insightful rooks?

[Update: A slightly more technical piece on this topic has been published in PNAS]

BBC News report that, in recent experiments, rooks (a species of crow) have demonstrated surprisingly sophisticated tool use. For instance, the rooks learned to insert a stone into a plastic tube to gain access to a second stone, which they then inserted into another tube to finally retrieve a juicy maggot.
I am a big fan of corvids. But what do these new findings say about their intelligence? What do rooks understand about causes and effects in the physical world? The controversy that this experiment touches upon boils down to the question: How much did the rooks figure out on their own, and how much did the researchers help them? Time-honored animal training techniques, in fact, allow to "shape" (as animal psychologists say) behavior of amazing complexity. Just think of what animals do in movies. The key technique is to break down a complex behavior into small, simple components that the animal can learn without much difficulty (and without much understanding).

The rooks' tool use behavior was shaped at least to some extent. For instance, stones where initially placed near the rim of the plastic tube, so that they could easily (and accidentally) be nudged down the tube. After the rooks mastered this step, stones were placed besides the apparatus, and finally they were moved further so that rooks learned to pick them up and transport them for some distance to the tube.

Such a use of shaping does not exclude that, by the end of the experiment, the rooks had developed an understanding of the task. For instance, they reliably chose stones small enough to fit into the tube. Thus I am not criticizing this brilliant experiment. I am
an even bigger fan of corvids now. But we do not know whether the rooks could have understood everything on their own.

Indeed, we do not know what "understanding" means. Animal psychologists have traditionally contrasted "insight" and "trial and error" learning. Insight is what happens when you realize the solution to a problem in your head, using your knowledge of causes and effects in the world. It is considered an advanced cognitive skill, available to humans and perhaps apes and, now, corvids. Trial and error is a more mundane process, whereby an organism learns to repeat behavior which, performed randomly or accidentally at first, has brought about desirable consequences. Shaping exploits animals' abilities of trial and error learning, by rewarding them only for the behavior we want them to produce (a classical example here). Can we understand animal intelligence by contrasting insight and trial-and-error learning? We do not know. Perhaps they are not fundamentally distinct phenomena, and a deeper understanding will come from looking at the problem from a different angle.

Main reference: Insightful problem solving and creative tool modification by captive nontool-using rooks, by C. D. Bird & N. J. Emery.